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ABSTRACT

Experience has shown that the pipe steel used in the
Trans-Alaska Pipeline System has complex properties
that must be taken into account in making safety
assessments of the pipe. To obtain a better understanding
of the steel behavior, a detailed test program has recently
been undertaken. The test results have been used to
develop a nonlinear model of the steel for use in stress
and deformation analysis of the pipeline. This paper first
outlines the model, and shows that it captures important
aspects of the steel behavior, including progressive
yielding and anisotropy. The paper then shows how the
values of the model parameters can be calculated from
experimental stress-strain data, and how the model can
be used for the analysis of pressurized pipelines,
accounting for interaction between hoop and longitudinal
stress. The theory is based on von Mises yield and the
Mroz plasticity model.

1. INTRODUCTION

An important aspect of the design and operation of the
Trans Alaska Pipeline System (TAPS) is the curvature
imposed on the pipeline by differential settlement of the
surrounding soil. Settled areas can be identified reliably
using the NOWSCO GEOPIG [1] “smart pig” which
measures the in-situ geometry of the pipeline. Changes in

the pig orientation as it passes through the lines are used
to compute the pipeline curvature.

SSD has developed a curvature screening tool that can be
used to help make decisions on whether or not excavation
and repair or releveling of the pipeline is necessary. The
screening tool, which is based in part on SSD’s PIPLIN
[2] computer program, estimates the pipeline moment
curvature relationships accounting for internal pressure
and axial force effects and inelastic behavior of the pipe
steel. The tool has been calibrated against the “Berkeley
Tests” [3] which were conducted on full-scale TAPS pipe-
joints during the 1970’s. One of the most important
parameters influencing the serviceability decisions is the
stress-strain behavior of the pipe material. The TAPS
pipe material is known to exhibit significant anisotropic
properties, which must be taken into account to obtain
accurate predictions of the experimental wrinkling
behavior [4].

As part of the screening tool development effort, a
detailed material testing program has been undertaken by
Alyeska at Southwest Research Institute (SwWRI) in San
Antonio, Texas. Based on the results from these tests,
SSD has developed an 8 parameter model that captures
the essential features of the observed inelastic steel
behavior. The 8 parameter model is used together with
the Mroz plasticity theory [S] to model the steel,



assuming that the pipe wall is in a state of biaxial stress.
This paper presents a description of this material model.
The steps in the presentation are as follows.

(1) In Section 2, the behavior observed in recent tests
of TAPS pipe steels is described.

(2) In Section 3 a method is presented for converting
the experimental stress-strain curves into a
convenient mathematical form.

(3) The method presented in Section 3 considers
uniaxial behavior of the steel, under axial stress or
hoop stress alone. In Section 4 the Mroz theory for
behavior under biaxial stress (combined axial and
hoop) is reviewed.

(4) The Mroz theory requires that the stress-strain
curve be expressed in a “multilinear” form,
consisting of a number of straight lines. In Section
5 a method is described for converting the
mathematical functions into multilinear form.

2. BEHAVIOR OF TAPS STEELS
2.1 Shape of Stress-Strain Curve

Stress-strain curves for pipeline steels are usually
obtained experimentally using tension test specimens
[6,7). Figure 2.1 shows the overall form of the
engineering stress-strain curve for a tension specimen cut
from TAPS pipe joints. This curve has five main regions,
as follows.

(1) A linear region in which the specimen is elastic, with
an elastic modulus near 30000 ksi (206843 MPa). At
the end of this region (the proportional limit) the
specimen begins to yield.

(2) A-curvilinear region in which the specimen yields
and strain hardens. The tangent modulus in this
region becomes progressively smaller.

(3) An essentially linear region in which the specimen
continues to strain harden, with a tangent modulus
that is nearly constant. This modulus is small, with a
typical value about 1% of the elastic modulus.

(4) A long region in which the strength is roughly
constant.

(5) A strain softening region in which the strength
reduces and the specimen ultimately fractures. This

region begins at strains of about 12%, and the
specimen typically fractures at strains above 20%.

For analysis of pipelines up to incipient wrinkling, the
first three of these regions are the most important, since
the strains at the onset of wrinkling are below 5%. For
analysis, therefore, the stress-strain behavior to be
considered is as shown in Figure 2.2. This curve is
divided into three regions, namely a linear elastic region,
a curved “transition” region, and an essentially linear
“fully plastic” region. Note that the term “fully plastic”
is not strictly correct, since the steel still has a finite
hardening modulus.

2.2 Anisotropy

Figure 2.3 shows tension stress-strain curves for
longitudinal and hoop specimens cut from a typical 48
inch (122 cm) diameter, 0.462 inch (1.17 cm) and 0.562
inch (1.43 cm) thick joint (length) of X65 TAPS pipe.
The two curves are substantially different, with a larger
proportional limit stress and a shorter curvilinear region
in the hoop direction than in the longitudinal direction.
The hoop curve has an essentially horizontal region up to
about 1% strain, after which it has essentially the same
strain hardening modulus as the longitudinal curve.

The steel thus behaves as an anisotropic material, with
different behavior in the longitudinal and hoop
directions. The reason for the anisotropy appears to be
related to the manufacturing process, when the pipe is-
cold expanded in the hoop direction to satisfy tolerances
on roundness and diameter. Comparative analyses that
account for or ignore the anisotropy show that it has a
substantial effect on the analysis results, and hence that it
should be accounted for [4].

2.3 Specified Minimum Yield Strength

For TAPS, steels of X60, X65 and X70 grades are used,
with specified minimum yield stress (SMYS) values of
60, 65 and 70 ksi (414, 448, and 483 MPa), respectively.
According to specification API SL [6], the yield stress
value is defined as the stress at 0.5% tensile strain in the
hoop, not the longitudinal, direction.



To satisfy API-5L, the actual hoop stress at 0.5% tensile
strain (YSH) must equal or exceed the SMYS. All of the
recently tested joints of TAPS pipe have YSH values that
exceed the SMYS values with a ratio YSH/SMYS
ranging from 1.03 to 1.15. Because of the anisotropy, the
actual longitudinal stress at 0.5% tensile strain (YS[)
may be less than SMYS. For the typical X65 steel shown
in Figure 2.3, YSH=71.8 ksi (495 MPa) and YS[ =65.2
ksi (450 MPa).

2.4 Aspects to be Captured in a Model

From the preceding discussion, the following aspects of
behavior should be considered when modeling pipeline
steels.

(1) Linear elastic behavior up to the proportional limit.

(2) Yielding with a progressively decreasing tangent
modulus.

(3) A final linear region with a small strain hardening
modulus. It is typically not necessary to consider
strains larger than about 3%.

(4) Anisotropy, giving different stress-strain curves in
the longitudinal and hoop directions.

In the next sections a steel model that accounts for these
aspects is described for uniaxial and biaxial behavior.

3. UNIAXIAL MODEL
3.1 Parameters for Longitudinal Relationship

The shape of the longitudinal stress-strain relationship
for the model is first defined using six parameters, as
shown in Figure 3.1. These six parameters are as follows.

(1) The initial elastic modulus, Egtart

(2) The final strain hardening modulus, Eend , for strains
larger than about 1%.

(3) The nominal yield strength, oyr. This is the point
where the elastic and strain hardening slopes
intersect (note that ey; = Gy /Egart)-

(4) A factor, o defining the proportional limit stress.

(5) The strain at which the “fully plastic” state is
reached, defined by a factor f3, .

(6) A parameter, y, that defines the shape of the
relationship between the proportional limit (at a

stress equal to (1-ap)oyL) and the “fully plastic”
state (at a strain equal to (1+, ) eyL).

3.2 Additional Parameters for Anisotropy

If the pipe steel behaved isotropically, the stress-strain
relationship would be the same in the longitudinal and
hoop directions. As noted, however, the steel behaves
anisotropically, with different relationships. Two
additional parameters are used to define the amount of
anisotropy, as shown in Figure 3.2. These parameters are
as follows.

(7) The stress difference between the hoop and
longitudinal tension curves at large strains, DSY.

(8) A factor, o, , defining the hoop tension proportional
limit stress.

As explained later, the complete hoop tension stress-
strain relationship is defined using these two parameters
plus the six parameters for the longitudinal tension
stress-strain relationship.

3.3 Choosing Parameter Values

If values are given for the above 8 parameters, the
longitudinal and hoop stress-strain relationships can be
constructed. Typically, however, the stress-strain
relationships will be known from test results, and
parameter values must be chosen to match these known
relationships. .

Given the relationships for the longitudinal and hoop
directions, both defined as a series of stress-strain points,
the steps are as follows. The sequence is illustrated in
Figure 3.3.

(1) Choose a series of experimental points that define
the longitudinal relationship.

(2) Choose the value of Egtart to match the initial
elastic slope. Also choose the proportional limit
stress.

(3) Choose the value of Eepd to match the strain
hardening slope for strains larger than about 1%.

(4) Hence get the values of oy, and o,

(5) Choose the longitudinal strain at the start of the
“fully plastic " region. Hence get the value of 3 .



(6) Set up a pair of skew axes covering the curved
segment of the relationship. Map the stress-strain
points in this segment from X' and Y' to a pair of
normalized orthogonal axes, X and Y, as shown in
Figure 3.3. ' '

(7) Assume an ellipsoidal curve in the normalized

space, with the form XT+Y'=1, Using least squares
minimization, find y that gives the best fit with the
data. A value y=1 is a straight line, and y=2 is a
circle.

(8) Map the curve back to the stress-strain axes (X' and
Y'). Confirm that a good fit has been obtained to
the experimental points.

The six parameters required to compute the longitudinal
tension relationship are now known. For the hoop
relationship the additional steps are as follows (see
Figure 3.2).

(9) Choose a series of experimental points that define
the hoop stress-strain relationship.

(10) Use the same values of Egtart and Eend as for the
longitudinal relationship.

(11) Choose the difference in strength, DSY, at about
2% strain. Hence get the value of oyy.

(12) Choose the hoop proportional limit stress. Hence
get the value of o,

The two additional parameters required to compute the
hoop tension relationship are now also known.

3.4 Multilinear Form for Analysis

The 8-parameter model defines stress-strain relationships
that are curved in the “transition” region. As shown in
Section 4, for analysis using the Mroz theory these
curves must be approximated by multilinear curves made
up of straight segments. The procedure for setting up the
multilinear curves is described in the Section 5.

3.5 Comparison: Analytical and Experimental Curves

The procedure for selecting the 8 parameters has been
applied to the Alyeska/SwRI detailed test results referred
to earlier, and the values of the parameters for each tested
steel have been established. These steel models are given
names starting with “DT”, for “detailed test”. Test results

are also available for the steels from the full scale
“Berkeley Test” specimens [3]. The values of the 8
parameters for these steels have also been established.
These steel models are given names starting with “B”, for
“Berkeley”.

For strains up to 3%, Figures 3.4 through 3.6 compare the
analytical tension stress-strain curves for steels “DT1”,
“DT3” and “DT6"” with the experimental data from
which the curves were derived (from Joints 1, 3 and 6 of
the test series). The analyses were performed using
PIPLIN, and hence are for the multilinear forms of the 8-
parameter model.

For these steels the agreement is very close for
longitudinal tension, which is to be expected since it is
the primary basis of the 8-parameter model. The
agreement is also close for hoop tension, except for the
part of the curve just after first yield, where the
experimental data shows an essentially zero slope.

For strains up to 5%, Figure 3.7 compares the tension test
data for Berkeley Test pipe joint number 1007 with the
analytical steel “B60-B . The experimental hoop tension
curve is based on ring expansion test data. This curve
indicates that the hoop strength is substantially larger
than the longitudinal strength at a strain of about 2%,
corresponding to a DSY value of about 2.5 ksi. This is
different from the behavior measured in the recent
detailed tests, which showed essentially the same
longitudinal and hoop tension strengths at 2% strain, or a*
zero DSY value. It is possible, therefore, that the
difference between the longitudinal strength and the hoop
strength is a consequence of the ring expansion test
method.

For strains up to 5%, Figure 3.8 compares the tension test
data for Berkeley Test pipe joint number 3743 with the
analytical steel “B65-A" with a zero DSY value. A
longitudinal tension stress-strain curve for this joint is
given in [3], but no hoop tension curves are available.
The hoop tension curve was developed by assuming that
the ratio of hoop to longitudinal tension strength at a
strain of 0.5% was similar to that for joint 1007.

For strains up to 5%, Figure 3.9 compares the tension test
data for Berkeley Test pipe joint number K1212, which is



a spiral welded joint, with the analytical steel “B60S-H".
A comparison of the' longitudinal and hoop tension
curves shows that they are nearly identical, indicating
that the material is essentially isotropic. This is
reasonable, since spiral welded pipe is not cold expanded
during manufacture. Figure 3.9 shows that the analytical
and experimental results agree closely up to a strain of
about 1.5%, and that the actual steel then strain hardens
and becomes significantly stronger than the analytical
steel.

4. BIAXIAL BEHAVIOR
4.1 Von Mises Yield: Effect of Hoop Tension

For analysis using PIPLIN, the pipe is modeled
essentially as a beam, and the beam moment-curvature
behavior is calculated by considering the stress-strain
behavior of longitudinal “fibers” of the pipe cross
section. If the only significant stresses on these fibers
were longitudinal stresses, as is usually the case in a
beam, the fiber stress-strain relationship would be the
longitudinal strain relationship for the pipe steel.
However, a pipe also has internal pressure loading, which
causes hoop stresses. Because of the internal pressure, a
fiber is in a state of biaxial stress, with combined hoop
and longitudinal stresses. As a result, the longitudinal
fibers, have effective stress-strain relationships that are
different from the basic longitudinal relationship. This is
a consequence of the von Mises theory for yield of steel
under multi-axial stresses.

The basic effect is illustrated in Figure 4.1. Figure 4.1(a)
shows a simple elastic-perfectly-plastic stress-strain
relationship (i.e., a relationship with no strain hardening).
Figure 4.1(b) shows the corresponding von Mises ellipse
for yield in a biaxial state of stress. If the stress point lies
within the ellipse the steel is elastic; if the stress point
lies on the ellipse the steel is yielded. Stress points
outside the ellipse are not allowed for an elastic-
perfectly-plastic stress-strain relationship. As shown in
Figure 4.1(b), if the hoop stress is zero, the longitudinal
yield strengths are equal to the uniaxial values, and are
also equal in tension and compression. As shown in
Figure 4.1(c), however, as the internal pressure, and
hence the hoop stress, is increased, the longitudinal yield
strengths change, and become different in tension and

compression. In particular, the longitudinal yield strength
in compression can be substantially smaller than the
uniaxial yield strength.

It may be noted that the hoop and longitudinal stresses
are not the only stresses in a pipe. They are, however, the
dominant stresses in most cases. [t is assumed that the
other stresses, which include shear and radial stresses, are
small and can be ignored.

4.2 Mroz Theory: Strain Hardening Behavior

Figure 4.2 shows a steel that has a multi-linear stress-
strain curve, similar to the curve for an actual pipe steel.
The material still yields according to the von Mises
theory, but now its behavior is defined not by a single
von Mises ellipse but by a series of ellipses. If the stress
point is inside the smallest ellipse the steel is elastic, and
its modulus is the elastic modulus. Each time the stress
point reaches a new ellipse the modulus changes to a
smaller value. An elastic-perfectly-plastic steel is a
special case, with a zero strain hardening modulus after
the first ellipse. As shown in Figure 4.2, if the steel is
subjected to uniaxial stress, in either the hoop or
longitudinal direction, the stress-strain curve is the
uniaxial curve.

The Mroz theory specifies how the ellipses move as the
steel yields, and hence models the behavior of the steel
under biaxial stress (the Mroz theory applies to full
multi-axial stress conditions, but only the special case of*
biaxial stress is assumed for the pipe wall). The theory
postulates that the ellipses translate without changing
size or shape, which is the well-known kinematic
hardening assumption. The theory also specifies the
direction of movement for each ellipse. Essentially, any
ellipse moves so that when the stress point reaches the
next larger ellipse, the yielding ellipses do not overlap. If
the steel unloads, and returns to an elastic state, any
ellipses that have moved remain in their shifted positions
until the steel re-yields.

Figure 4.3 shows how the ellipses for the steel in Figure
4.2 would move for a stress path that involves (1)
application of hoop tension (due to internal pressure), (2)
addition of longitudinal compression (due to axial force
and bending moment), causing the steel to yield, and (3)



removal of the hoop tension (depressurization), with
elastic unloading. In this example, hoop stress is first
applied (Path 0-1-2). First yield occurs at Point 1, when
the stress point reaches the first (smallest) von Mises
ellipse. As the steel yields and strain hardens, the Mroz
theory predicts that the first ellipse moves as shown. At
Point 2 axial stress is added along Path 2-3-4. As before
the first ellipse moves. At Point 3 the stress point reaches
the second ellipse. Both the first and second ellipses then
move. Finally the hoop stress is removed. The steel
unloads elastically along Path 4-5, with no further
movement of the ellipses. The ellipses thus remain in
their shifted positions. One consequence of this is that if
the stresses were reversed, along Path 5-4-3-2-1-0, the
behavior would be eclastic, whereas along the original
Path 0-1-2-3-4-5 the steel yielded.

This example illustrates the essential features of the
Mroz theory. The theory considers general loading paths,
including non-radial loading (e.g., apply hoop tension
then add longitudinal tension or compression) and cyclic
loading (e.g., cyclic yielding - in tension and
compression).

4.3 Anisotropy

As noted previously, tests on hoop and longitudinal
specimens cut from TAPS pipe show that the pipe steel
has significantly different behavior in the hoop and
longitudinal directions (i.e., the steel is anisotropic). In
the basic Mroz theory the behavior is the same in both
directions (i.e., the steel is isotropic), as shown in Figure
4.2. As noted, the cause of the anisotropy appears to be
cold working of the steel during the manufacturing
process, when the pipe is expanded to satisfy tolerances
on roundness and diameter. This effect is predicted
qualitatively by the Mroz theory, and can be incorporated
into the theory as a simple extension.

The effect of hoop expansion is shown in Figure 4.4. If
the steel is yielded in the hoop direction (by cold
expansion) and then unloaded, the von Mises ellipses are
shifted as shown. Hence, for subsequent loading the
stress-strain curves in the hoop and axial directions are
different. The curves are also different in tension and
compression. Hence, the steel behaves anisotropically.

One way to include anisotropy in the Mroz theory is to
“prestrain ” the steel by yielding it in the hoop direction,
exactly as in Figure 4.4. This approach has been used in a
number of pipe wrinkling studies [4]. An alternative
approach is to achieve the same effect by specifying
initial shifts for the von Mises ellipses. In Figure 4.4, if it
is specified that the centers of the two inner ellipses are
not initially at the origin, but are shifted along the hoop
axis, the effect is the same as imposing hoop prestrain.
The initial shift method is more flexible than the
prestraining method, and for more recent studies it has
replaced prestraining.

5. CONVERSION OF 8-PARAMETER MODEL
PARAMETERS TO INPUT REQUIRED FOR
MROZ THEORY

5.1 Multilinear Model with Shifts

The 8-parameter model described in Section 3 defines
curvilinear stress-strain relationships for longitudinal and
hoop tension (see Figures 3.1 and 3.2). For analyses
using the Mroz theory, this relationship must first be
approximated by multilinear curves, using a number of
straight segments. These multilinear curves must then be
converted to corresponding von Mises ellipses, plus a
strain hardening modulus for each ellipse. As shown in
Figure 5.1, the size of each ellipse is defined by a
uniaxial yield stress, oy, and its initial location (to
account for hoop prestraining) is defined by a hoop shift,
Sy- The procedure for calculating the multilinear curves,’
and hence the von Mises ellipses, is described in this
section.

5.2 Longitudinal Tension Curve

Figure 5.2 shows stress-strain curves for longitudinal and
hoop tension. The differences between the curves have
been exaggerated for clarity. Each multilinear curve is
defined by points O, A, B, and C, plus points T1, T2, T3,
etc. in the “transition” region. The number of points in
the transition region can be specified, and is usually
larger than 3. The stress-strain coordinates of the points
on the longitudinal tension curve are calculated as
follows (see Figure 5.2).



(1) Point O is the origin.

(2) PointA is-calculated using Estart, 0y, and o, .

(3) Point C is calculated using Eend, oy, and a
specified maximum strain (the strain at Point C).

(4) Point B is calculated using Estart, Eend, 0y and
B, .

5) Alies X'-Y' and X-Y are set up for the transition
region. Points T1, T2, etc. are spaced at equal
angles in the X-Y space. The X-Y coordinates of
these points are calculated, then transformed to X'-
Y' coordinates, and hence to stress-strain
coordinates.

5.3 Hoop Tension Curve

The stress-strain coordinates of the points on the hoop
tension curve are calculated as follows (see Figure 5.2).

(1) Point O is the origin.

(2) The stress oy, is calculated using 6, and DSY.

(3) Point A is calculated using Estart, 0y, and o,

(4) Point C is calculated using Eend, Oyy and the
specified maximum strain (at Point C).

(5) Point B is calculated such that the hoop curve in
the transition region has the same proportions as
the longitudinal curve. This ensures that the
tangent moduli for the linear segments are the
same for both curves, which is a requirement of the
Mroz theory. This is why the parameter B, is not
one of the eight parameters. In effect, the value of
BH is chosen so that the transition regions have the
same proportions for both curves.

(6) As before, axes X'-Y' and X-Y are set up for the
transition region, points T1, T2, etc. are spaced at
equal angles in the X-Y space, and the X-Y
coordinates of these points are calculated. These
coordinates are the same for both curves. As
before, these coordinates are transformed to X'-Y'
coordinates, and hence to stress-strain coordinates.

5.4 Ellipse Sizes and Shifts

The longitudinal and hoop curves are now defined by
corresponding pairs of points (O, A, T1, T2, ..., B,C). A
von Mises ellipse must be set up for each pair of points.
The sizes and shifts for the ellipses must be such that the
correct longitudinal and hoop tension curves are obtained

if the resulting steel model is analyzed for uniaxial
stresses. The longitudinal and hoop compression curves
then follow from the Mroz theory.

Figure 5.1 shows a typical ellipse. Given a pair of
longitudinal and hoop stresses, (O'L,OH), for a pair of
corresponding points on the two stress-strain curves (e.g.,
Points A and A shown in Figure 5.2), the size, ¢ , and
hoop shih, Sy, oi‘thc ellipse are calculated by solviﬁg the

following two simultaneous equations.

(1) To get the correct hoop stress :
Ou-SH=Oy

(2) To get the correct longitudinal stress :

o’L-SirtoLSH =0y
As the earlier examples show (Figures 3.4 through 3.9),
the theoretical and experimental curves are in close
agreement.

6. CONCLUSION

Tests show that TAPS pipeline steels have complex
behavior, with curvilinear stress-strain relationships and
a substantial amount of anisotropy. In order to develop
rational methods for the analysis of pipes, particularly for
estimating pipe curvature capacities, it is important for
the analysis models to capture the important aspects of'
the steel behavior.

This paper has described an “8-parameter” steel model
for mathematical representation of the behavior of TAPS
pipeline steels. This model captures most aspects of the
steel behavior, as observed in tests on a number of pipe
specimens. This paper has shown how the parameter
values for the model can be calculated from experimental
stress-strain data, and how the model can be used in
stress and deformation analyses using the PIPLIN
computer program. This paper has also presented a brief
explanation of the Mroz plasticity theory that is used to
account for interaction between hoop and longitudinal
stresses.
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(2) Uniaxial Behavior
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Voa Mises ellipse

defines matesial yield.

Material is elastic for
points inside the ellipse.
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(b) Voo Mises Ellipse and Yield Under Uniaxial Stress
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(c) Yield Under Biaxial Stress

FIGURE 4.1 EFFECT OF HOOP STRESS ON
LONGITUDINAL STRENGTH

or compeession (i.c. for uniaxial stress).
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(b) Biaxial Behavior with Uniaxial Loading

FIGURE 4.2 BASIC BIAXIAL MODEL
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(a) Basic Uniaxial Behavior
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FIGURE 4.3 MOTION OF ELLIPSES IN A
LOADING-UNLOADING CYCLE
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(b) Behavior After Hoop Prestraining

FIGURE 4.4 EFFECT OF HOOP PRESTRAINING ON
STRESS-STRAIN RELATIONSHIPS
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(b) With Hoop Sbift

FIGURE 5.1. VON MISES ELLIPSE
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(a) Polnts on Stress-Strain Curves

Curve in nocmalized X-Y
coordinates is defined by:
X'+YT =]
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(b) Generation of Polats in Transition Reglon

FIGURE S2 PROCEDURE FOR GENERATING MUTLILINEAR
STRESS-STRAIN CURVES



